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Introduction. Familiarly, if the n × n matrix H is complex hermitian (or, more
particularly, real symmetric or imaginary antisymmetric) then the eigenvalues{

λ1, λ2, . . . , λn

}
are necessarily real, and amongst the eigenvectors{

h1, h2, . . . , hn

}
those associated with distinct eigenvalues are necessarily

orthogonal:
h i ⊥ h j if λi �= λj

If the spectrum is non-degenerate the eigenvectors (which we might—but won’t
—assume to have been normalized) provide an orthogonal basis in Vn. More
generally, we write

{
(λ1, δ1), (λ2, δ2), . . . , (λν , δν)

}
where

δα ≡ degeneracy of λα :
∑
α

δα = n

and the λα are distinct: each such λα identifies an “eigenspace” V(α)—
a δα-dimensional subspace of Vn. Every element of V(α) is orthogonal to every
element of V(β) (α �= β). The set of eigenvectors is similarly partitioned

{
(h1, . . . , hδ1), (hδ1+1, . . . , hδ1+δ2), . . . , (hn−δν

, . . . , hn)
}

where the vectors (h1, . . . , hδ1) span V(1) and can be assumed to have been
orthogonalized (“by hand”), etc.

With this apparatus in hand, we construct matrices1

Pi ≡
[

h · h t

(h , h)

]
i
=


(h , h)–1




h1h̄1 h1h̄2 · · · h1h̄n

h2h̄1 h2h̄2 · · · h2h̄n
...

...
. . .

...
hnh̄1 hnh̄2 · · · hnh̄n







i

1 Here (h , h) ≡ h t· h and t signifies conjugated transposition.
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which project onto the “eigenrays”:

Pi h i = h i

From the circumstance that the
{

h1, h2, . . . , hn

}
comprise—automatically, else

(in the case of degeneracy) by contrivance—an orthogonal basis in Vn it follows
that the matrices

{
P1, P2, . . . , Pn

}
comprise a complete∑
i

Pi = I (1.1)

orthogonal set
PiPj = O : i �= j (1.2)

of projection matrices
P2

i = Pi : all i (1.3)

in terms of which we have the “spectral resolution of H:

H =
∑

i

λi Pi (2)

In degenerate cases we can lump the projectors onto the same eigenspace,
writing

H =
∑
α

λαP(α) with P(1) ≡ P1 + P2 + · · · + Pδ1 , etc.

where ∑
α

P(α) = I

P(α)P(β) = O : α �= β

P2
(α) = P(α) : all α

From (1) and (2) we obtain

Hk =
∑

i

λk
i Pi

which in the case k = 0 gives back the completeness condition (1.1). For all
f(x) that can be expressed as weighted sums of powers we have

f(H) =
∑

i

f(λi Pi) =
∑

i

f(λi) Pi (3)

Relaxation of the hermiticity assumption. Let M be any n × n matrix (no
symmetry properties assumed). We proceed from the observation that, while
M and its transpose M T have identical spectra,2 they can be expected to have
distinct eigenvectors. We are led thus to distinguish right eigenvectors—defined

2 So long as M remains unspecialized we can say nothing about the any
special properties of the eigenvalues.
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M a i = λi a i

—from left eigenvectors, defined

M T b i = λi b i equivalently b T
i M = λi b

T
i

Immediately

b T
i M a j =

{
λi · b T

i a j on the one hand
λj · b T

i a j on the other

from which we conclude that the sets
{

a1, a2, . . . , an

}
and

{
b1, b2, . . . , bn

}
are biorthogonal in the following sense:

b i ⊥ a j if λi �= λj

Here
b i ⊥ a j means that (b i, a j) ≡ b T

i a j = 0

Note that in the preceding equations we encounter the simple transpose, not
the conjugated transpose. And that the a/b distinction disappears when M is
real symmetric: “biorthogonality” reduces then to “simple orthogonality.”

Use the material now in hand to define

Pi ≡
[

a · b T

(a , b)

]
i
=


(a , b)–1




a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
. . .

...
anb1 anb2 · · · anbn







i

and observe that

Pi a i = a i

Pi a j = 0 if λi �= λj (by biorthogonality)
b T

i Pi = b T
i

b T
i Pj = 0 T if λi �= λj (by biorthogonality)




(4)

Moreover,

Pi Pi = Pi (5.1)
Pi Pj = O if λi �= λj (by biorthogonality) (5.2)

and if the spectrum is non-degenerate it is assuredly the case that∑
i

Pi = I (5.3)

Finally, we have this universally valid generalization of the familiar spectral
resolution formula (2):

M =
∑

i

λi Pi (5.4)

In the presence of spectral degeneracies we can by contrivance arrange for
equations (5) to be valid.
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First application: Hamiltonian generators of quantum gates. The controlled
evolution of the state |Ψ〉 is accomplished by the action of “gates,” represented
by unitary matrices the designs of which is reflect the basic elements of Boolean
logic. The action of such gates is quantum dynamical

|Ψ〉0 −→ |ψ〉t = e−(i/�)H t︸ ︷︷ ︸ |Ψ〉0
|—becomes Ugate at time t = 1

In quantum mechanics we are most commonly given H, and asked to construct
U(t), but here we confront the inverse problem: we are given Ugate and asked
to construct the generator Hgate of that matrix. Since the unitarity of Ugate

implies the hermiticity of Hgate we can solve the problem by appeal simply to
(2), don’t in this instance need the generality of (5.4). I illustrate the procedure
by looking to a specific example:

The most common instance of the important cNOT (“controlled NOT”)
gate is defined3

UcNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Mathematica supplies
{

λ1, λ2, λ3, λ4

}
=

{
− 1, 1, 1, 1

}
and the (unnormalized

but orthogonal) eigenvectors

h1 =




0
0
−1
1


 , h2 =




0
0

+1
1


 , h3 =




1
0
0
0


 , h4 =




0
1
0
0


 ,

from which we obtain the projection matrices

P1 =




0 0 0 0
0 0 0 0
0 0 + 1

2 − 1
2

0 0 − 1
2 + 1

2


 , P2 =




0 0 0 0
0 0 0 0
0 0 + 1

2 + 1
2

0 0 + 1
2 + 1

2




P3 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , P3 =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




So we have
UcNOT = (−1)P1 + (+1)Q (6)

3 See N. David Mermin,QuantumComputer Science: An Introduction (),
page 10.
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with

Q ≡ P2 + P3 + P4 =




1 0 0 0
0 1 0 0
0 0 1

2
1
2

0 0 1
2

1
2




Equation (6) can now be written

UcNOT = eiπ P1 + ei0 Q = eiπ P1 = e−(i/�) HcNOT t
∣∣∣
t=1

with
HcNOT = −π� P1

Second application: Continuously interpolated Markoff processes. Let the
elements of

P =




p1

p2
...

pn




be probabilities, with
∑

i pi = 1. Markoff processes have the structure

Pk−1 −→ Pk = M Pk−1 = Mk P0

where the elements of M = ‖mij‖ are “transition probabilities” and

∑
elements of Pk = 1 : all k

requires that the columns of M sum to unity:
∑

i mij = 1 (all j).

Look, for example, to the case

M =


 0.261 0.087 0.052

0.006 0.042 0.862
0.733 0.871 0.086




The eigenvalues are
{
λ1, λ2, λ3

}
=

{
1.000,−0.790, 0.179

}
. It is characteristic

of Markoff matrices that one of the eigenvalues is unity, and the others have
absolute values that are less than one. The negative eigenvalue is admissible,
but has a complex logarithm. To avoid the “complex probabilities” to which
we would be led when we construct the matrix M t that interpolates between
the matrices Mk (k = 0, 1, 2, . . .) I therefore adopt this modified definition:

M =


 0.261 0.087 0.052

0.006 0.042 0.862
0.733 0.871 0.086





 0.261 0.087 0.052

0.006 0.042 0.862
0.733 0.871 0.086
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The spectrum of this M is the assuredly non-negative square of the previous
spectrum (it reads

{
1.000, 0.624, 0.032

}
). We construct the right eigenvectors{

a1, a2, a3

}
, the left eigenvectors

{
b1, b2, b3

}
, and from them assemble

P1 = a1 · b1
T

(a1, b1)
=


 0.085 0.085 0.085

0.434 0.434 0.434
0.481 0.481 0.481




P2 = a2 · b2
T

(a2, b2)
= a matrix of undistinguished appearance

P3 = a3 · b3
T

(a3, b3)
= ditto

which do in fact comprise a complete set of orthogonal projection matrices. We
now have

M = P1 + (0.624) P2 + (0.032) P3

giving

Mk = P1 + (0.624)k P2 + (0.032)k P3 (7)
↓
= P1 in the limit k ↑ ∞

The implication is that all initial probability vectors P0 proceed asymptotically
to the state

P∞ = a1

sum of the elements of a1
=


 0.085

0.434
0.481




Notice that the elements of P∞ are precisely the elements that we see repeated
in P∞ are—for readily understood reasons—precisely the elements that we see
repeated in the columns of P1.

Returning now to (7), we have

M = elog 1.000 P1 + elog 0.624 P2 + elog 0.032 P3

= e−0.471 P2−3.441 P3

giving the interpolating matrix

M t = eL t with L = log λ2 · P2 + log λ3 · P3 (8)

In physical applications the elements of M are subject to a principle of
detailed balancing: mij = mji. The analysis proceeds then not from (5.4)
but from the more familiar equation (2). It is found in such cases that L is
symmetric, and that the elements in its columns (rows) sum to zero. And that
the calculation typically proceeds L =⇒ M rather than (as above) M =⇒ L,
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with the structure of L read directly from (say) the “adjacency matrix” of a
graph (as in Matt Jemielita’s thesis ()).

Third application: Proof of an elegant identity . One frequently encounters
arguments that hinge on the identity

det M = etr logM , i.e., log det M = tr log M

—proofs of which usually pertain only to cases in which M is equivalent to a
diagonal matrix: M = S –1 D S. We are in position now to construct a proof
which is subject to no such limitation. For we have

M =
∑
α

λαP(α) = exp
{∑

α

log λαP(α)

}

where the λα are distinct and P(α) projects onto the δα-dimensional eigenspace
V(α). Familiarly, det M = (λ1)δ1(λ2)δ2 · · · (λν)δν . But the trace of a projection
matrix is the dimension of the space onto which it projects, so we have

tr
{∑

α

log λαP(α)

}
=

∑
α

δα log λα

= log
{

(λ1)δ1(λ2)δ2 · · · (λν)δν

}
QED

Concluding comments. In this short note my intent has been to make more
conveniently available some of the material of which I made critical use in a
Mathematica notebook (“New Markoff: Classical/Quantum Markoff Processes
( April )) written in conjunction with Matt Jemielita’s thesis, which
is concerned with classical/quantum random walks on graphs. The heart of
the note resides in the “generalized spectral representation” (5.4) to which my
title refers. I have no doubt that mathematicians would consider (5.4) to be
a commonplace triviality, but think it fair to say that (5.4) and its powerful
implications are unfamiliar to most physicists—though it was a few lines in a
paper by a physicist that introduced me to this topic.4 To say the same thing
another way, one only seldom encounters references in the physics literature
to “biorthogonality,” though it underlies the entry of the “reciprocal lattice”
into the solid state physics of periodic structures (crystals).5 This has probably
to do with the fact that the matrices encountered in physical applications are
usually (anti)symmetric or rotational (in either the Euclidean or Lorentzian
sense), (anti)hermitian or unitary—seldom asymmetric. Or rectangular, in
which context something very like the present line of argument leads to the
singular value decomposition (SVD).

4 I allude to remarks on page 418 of Elliott W. Montroll’s “Markoff chains,
Wiener integrals and quantum theory,” Comm. Pure & Appl. Math 5, 415–453
(1952).

5 I have explored aspects of this subject in “Recirocal systems of non-
orthogonal quantum states” ().


